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ABSTRACT

Previous studies have outlined benefits of using multiple model platforms to make seasonal climate pre-

dictions. Here, reforecasts from five models included in the North American Multimodel Ensemble (NMME)

project are utilized to determine skill in predictingArctic sea ice extent (SIE) during 1982–2010.Overall, relative

to the individual models, the multimodel average results in generally smaller biases and better correlations for

predictions of total SIE and year-to-year (Y2Y), linearly, and quadratically detrended variability. Also notable is

the increase in error for NMME predictions of total September SIE during the mid-1990s through 2000s. After

2000, observed September SIE is characterized by more significant negative trends and increased Y2Y variance,

which suggests that recent sea ice loss is resulting in larger prediction errors. While this tendency is concerning,

due to the possibility of models not accurately representing the changing trends in sea ice, the multimodel

approach still shows promise in providing more skillful predictions of Arctic SIE over any individual model.

1. Introduction

September Arctic sea ice has decreased by more than

10% per decade since satellite observations began in

1979 (Stroeve et al. 2012; Comiso et al. 2008). The

historical record of sea ice satellite observations is

relatively short (Serreze and Stroeve 2015); however,

there is a clear decline in September sea ice extent

(SIE) since 1979 with a steepening in the trend since

about 1997. There are a number of interdependent

factors that contribute to declining SIE and include

reduced sea ice thickness, longer melt seasons, in-

creased solar radiation absorption, and changes in

the high-latitude atmospheric circulation (Serreze and

Stroeve 2015; Ding et al. 2017). With the multitude of

environmental, geopolitical, and economic implications

of sea ice decline, it is imperative to improve sea ice

predictions through improved global climate model

simulations.

Previous work shows evidence for skillful predictions

of seasonal SIE using both statistical and dynamical

methods. Initial attempts at seasonal SIE prediction by

Walsh (1980) showed that a statistical method, using

empirical orthogonal functions, resulted in significant

skill out to only 1- to 2-month lead times for regional sea

ice north of Alaska in both winter and summer months.

Lindsay et al. (2008) also used a statistical approach to

assess how well pan-Arctic and regional September SIE

could be predicted for a lead time of up to one year.

Their results show that the trend accounts for a large

amount of the skill. They also document that, for fore-

cast lead times less than 2 months, sea ice concentrationCorresponding author: Kirstin Harnos, kirstin.harnos@noaa.gov
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is themost important predictor while ocean temperature

is more important for longer lead times.

Dynamical models also show the ability to skillfully

predict seasonal SIE, which depends on initial conditions,

data assimilation, and model physics (e.g., Msadek et al.

2014; Chevallier et al. 2013; Wang et al. 2013; Blanchard-

Wrigglesworth et al. 2015, 2017; Bushuk et al. 2017; Sigmond

et al. 2013; Merryfield et al. 2013b). Understanding pre-

dictability and skill in the dynamical models has been pre-

viously investigated using the ‘‘perfect model’’ approach in

which the initial conditions and model physics are assumed

to be perfect. These studies (e.g., Blanchard-Wrigglesworth

et al. 2015, 2017; Holland et al. 2011; Day et al. 2014) con-

clude that predictability in SIE is largely influenced by the

sea ice thickness initialization and improvements in skill

can be achieved through improved initial conditions. Hind-

cast studies (e.g., Msadek et al. 2014; Bushuk et al. 2017;

Chevallier et al. 2013; Wang et al. 2013) use real-world

initial conditions to determine actual skill between the

forecast and the observations, while sources of prediction

error are more difficult to isolate as they may be due to

either initial condition or model physics errors (Blanchard-

Wrigglesworth et al. 2015). Many studies attribute the

majority of skillful predictions of individual modeling sys-

tems to the long-term trend of sea ice; however, there is still

significant skill once the trends are removed mainly due to

the influence of the initial conditions (Sigmond et al. 2013;

Wanget al. 2013;Chevallier et al. 2013;Holland et al. 2011).

While covariability exists between sea ice and the at-

mospheric circulation, in general the chaotic nature of high-

latitude internal atmospheric variability acts to limits skill

(Wettstein andDeser 2014; Serreze and Stroeve 2015;Ding

et al. 2017). As the community continues to address ques-

tions of inherent predictability and how to enhance pre-

diction skill in the models, one approach to improve

seasonal-to-interannual predictions is by combining multi-

plemodels together (e.g., Guemas et al. 2016;DelSole et al.

2014; Kirtman et al. 2014). Previous work (Merryfield et al.

2013b; Blanchard-Wrigglesworth et al. 2017) has shown

higher skill in predicting SIE for multimodel ensem-

bles than an individual model. For seasonal forecasting,

Hagedorn et al. (2005) investigated improved skill using the

multimodel approach and concluded that the increase is

achieved by reducing model errors and improving forecast

consistency. Using hindcasts from nine coupled climate

models of El Niño–Southern Oscillation (ENSO), DelSole

et al. (2014) show that enhanced skill is due to the reduction

of noise and the combination of signals froma diverse set of

models. Model diversity results in the cancellation of less

meaningful signals and enhances the signals that are more

skillful. Interestingly, they conclude that the combination of

diverse model signals contributes more toward enhancing

skill than the reduction of noise by ensemble averaging.

In recent years, the Sea Ice Prediction Network (SIPN;

Stroeve et al. 2014) has collected predictions from a variety

of dynamical, statistical, and heuristic systems to predict

September sea ice. The results for 2008–13, informed by

hundreds of submissions, show that higher skill forecasts of

the SIE ensemble median occur when the observed SIE is

near the long-term trend (Stroeve et al. 2014). The SIPN

project has also found that dynamical SIE forecasts could

be improved by adopting postprocessing methods to cor-

rect for model bias, because individual model uncertainty

is the lead contributor to forecast uncertainty (Blanchard-

Wrigglesworth et al. 2017). Merryfield et al. (2013b) dem-

onstrated the potential usefulness of the multiplatform

approach to sea ice prediction. The average of two coupled

dynamical systems, the Climate Forecast System version

2 (CFSv2) and the Canadian Seasonal to Interannual

Prediction System (CanSIPS), outperformed both indi-

vidual systems overall in Arctic sea ice area forecasts.

Guemas et al. (2016) provide a comprehensive review on

the current state of sea ice predictability and recommend

an increase in ensemble sizes, an examination of more

case studies, and comparisons of multimodel systems to

individual models. As recommended, this paper examines

a comprehensive multimodel prediction system, which is

currently used for operational outlooks at the NOAA

Climate Prediction Center.

The North American Multimodel Ensemble (NMME)

prediction experiment (Kirtman et al. 2014) originates

from amultiagency team that collects and organizes global

model data on amostly uniform spatial and temporal scale.

Previously the NMME has been shown to improve fore-

cast skill for temperature, precipitation, sea surface tem-

perature (Becker et al. 2014), and ENSO (Barnston et al.

2017; Tippett et al. 2017). Given the potential impacts of a

changingArctic and the real-time success of theNMME in

improving prediction, the goal here is to explore the use of

theNMME in seasonal forecasts ofArctic sea ice. The skill

of Arctic SIE prediction is assessed from five NMME

models and themultimodel average. In particular, the total

SIE (which includes the long-term trend), year-to-year

SIE, and detrended variability of SIE reforecast simula-

tions will be examined.

2. Models, methods, and verification

a. Model description and methodology

There are five models that currently provide monthly

mean sea ice reforecasts to the NMME for an over-

lapping period of 1982–2010: CanSIPS, which is sep-

arated into its two components, Canadian ClimateModel

versions 3 and 4 (CanCM3 and CanCM4; Merryfield

et al. 2013a), the Forecast-Oriented Low Ocean Res-

olution model (FLORB-01; Msadek et al. 2014), the
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CFSv2 (Saha et al. 2014), and the Community Climate

System Model version 4 (CCSM4; Jahn et al. 2012).

CanCM3, CanCM4, and FLORB-01 archives were ac-

cessed through the online NMME Phase-II database

hosted by the National Center for Atmospheric Re-

search (NCAR). The model providers supplied the

CFSv2 and CCSM4 data. To be included in the NMME,

model data are processed by NCAR from its native

resolution to a common 18 3 18 grid. However, sea ice is

not considered a required NMME variable so there are

some caveats. For one, the CFSv2 sea ice data are not

archived in the NMME NCAR database and are not

processed onto the 18 3 18 grid. Finally, while FLORB-01

data are 18 3 18, they are currently archived at NCAR

on their native model tripolar grid. In this study, SIE

was calculated from the files as delivered by data pro-

viders. Table 1 summarizes the number of ensemble

members, resolution, and simulation years from each

model. To maintain consistency with previous CFSv2

sea ice studies (Wang et al. 2013), only 16 ensemble

members are included in the analysis; 10 to 12 members

are available from the other four models. Each hindcast

simulation is initialized and run out to 9 (CFSv2) or

12months (CanCM3, CanCM4, FLORB-01, andCCSM4),

although skill will only be evaluated for the shared

nine forecast leads. Forecast lead refers to the number

of months since the simulation began. For example, a

2-month lead forecast in September refers to a simu-

lation initialized in July. Henceforth, ‘‘NMME’’ will re-

fer to the average of the ensemble means (a total of 58

members) from five component models for bias exami-

nation. Skill metrics are calculated using the individual

model anomalies where the model climatology at each

lead time is removed. This has been shown previously to

provide a first-order removal of the model systematic

biases (Becker et al. 2014). Following the same ensemble

procedures as the operational NMME forecasts for

ENSO, temperature, and precipitation, the ensemble

average is equally weighted. Previous work by DelSole

et al. (2013) shows statistically for temperature and

precipitation that equally weighted multimodel forecasts

were similar in skill to those forecasts made using un-

equal weighted schemes. From a global perspective, they

found that, including high latitudes, unequal weighting

schemes added value to only a small fraction of the

globe. The effects of weighting have not been explicitly

explored for sea ice forecasts and are beyond the scope

of the study here.

SIE is defined as the total area of grid boxes with sea

ice concentration of at least 15%. Hindcast predictions

are verified against observational data derived from the

National Snow and Ice Data Center NASA bootstrap

algorithm (Cavalieri et al. 1996; Comiso 2000). Since the

NASA bootstrap is not used as an initialization source

for any of the NMMEmodels, it provides a slightly more

independent verification dataset. Further, Notz (2014)

conducted a comparison of the NASA bootstrap and

NASA team algorithms, the two most widely used data

sources for verification, and found that differences in SIE

were present mainly in areas of low sea ice concentration.

Because the total area of low concentration is small, both

of the NASA algorithms produce similar SIE values and

therefore selecting between the two products has little

effect on the verifications.

The prediction skill is evaluated using the anomaly

correlation coefficient (ACC), bias, and root-mean-square

error (RMSE). ACCmeasure the similarity, or the strength

of the fit, between the observed and predicted anomalies,

whereas the error is evaluated using the bias (forecast

minus observations) and RMSE (square root of the aver-

age of the squared difference between the forecast and

observations). Bias contains the sign of the error (over-

estimate or underestimate), but positive and negative

forecast errors can cancel out. In contrast, RMSE does not

indicate the sign of the error, but can provide an average

magnitude of error. Each metric is tested for statistical

significance at the 95% level using a t test.

Total SIE values and any associated skill are heavily

dominated by the long-term trend (Wang et al. 2013;

Chevallier et al. 2013; Sigmond et al. 2013). For certain

users interested in seasonal predictions outside of the

trend, the change of SIE from one year to the next, or

interannual variability, is more valuable. However, the

low-frequency trend in SIE loss is challenging to predict

because SIE has a significant nonlinear component, re-

flecting the steepening of recent declines (Serreze and

Stroeve 2015; Swart et al. 2015; Lindsay and Schweiger

2015). Isolating this lower-frequency signal is not a triv-

ial undertaking, especially in real-time prediction. For

the purposes of isolating variability outside of the trend,

or detrending the data, three approaches are presented.

Given the lack of clear future trajectory, one method is to

simply subtract out the standard least squares linear fit

over the reforecast period. However, this method does not

capture nonlinear change in the trend, which is still in-

cluded in the residual. With the increasingly steeper SIE

TABLE 1. Summary of the individual NMME models.

Model

Simulation

years Resolution

Ensemble

members

CanCM3 1981–2013 18 3 18 10

CanCM4 1981–2013 18 3 18 10

FLORB-01 1981–2013 18 3 18 (tripolar grid) 12

CFSv2 1982–2011 2.58 3 2.58 16

CCSM4 1982–2015 18 3 18 10
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trends (Serreze and Stroeve 2015; Swart et al. 2015;

Lindsay and Schweiger 2015), the use of a linear fit to

capture the variability signal can lead to an over-

estimation in skill depending on the evaluation time

period (Dirkson et al. 2017). Detrending SIE using a

quadratic fit was recently presented in Dirkson et al.

(2017) and this study will extend their results to four

additional models. Alternatively, the ‘‘year-to-year’’

(Y2Y) SIE calculation established in Wang et al. (2013)

does not assume an a priori fit and evaluates the skill of

the models in predicting SIE from one year to the next,

which can involve changes irrespective of the longer-

term trend. Y2Y SIE is computed as the difference in

SIE of year n1 1 minus year n (Wang et al. 2013). Note

that the final year in the record is not included in the

Y2Y analyses due to a lack of ‘‘final year 1 1’’ in-

formation. Y2Y errors may also detect systematic model

biases if values are consistently of the same sign.

b. Sea ice initialization

The model’s initial conditions are a leading source of

SIE prediction skill, especially at shorter lead times

(e.g., Chevallier and Salas-Mélia 2012; Blanchard-

Wrigglesworth et al. 2015; Msadek et al. 2014). Because

this study is utilizing models from several institutions,

documenting the differing approaches to initializa-

tion may provide insights into why models perform

differently. The National Centers for Environmental

Prediction (NCEP) CFSv2 hindcast initial conditions

are provided by Climate Forecast System Reanalysis

(CFSR; Saha et al. 2010; Wang et al. 2013). While

CFSR assimilates both in situ and satellite measure-

ments for atmosphere, land, and ocean values, sea ice

concentrations are solely from satellite observations.

More specifically, the source of sea ice concentration

from 1979 through December 1996 is from the NASA

team algorithm (Cavalieri et al. 1996). The NCEP

operational ice analysis (Grumbine 1996) is used from

January 1997 to the present. Sea ice thickness is de-

termined by the thermodynamic balance between the

sea ice, ocean, and atmosphere (Wang et al. 2013). The

NCAR CCSM4 model, run from the University of

Miami, also uses CFSR as the initial conditions for

their model (Infanti and Kirtman 2016).

The Hadley Centre Sea Ice and Sea Surface Tem-

perature dataset (HadISST1.1; Rayner et al. 2003) is

utilized as the sea ice initialization source in both

CanCM3 and CanCM4, which are two different climate

models from Environment Canada’s CanSIPS forecast

system. The initial conditions are provided from an as-

similation system that uses atmospheric inputs from the

ERA-Interim reanalysis, oceanic inputs from OISST,

and sea ice from HadISST1.1 (Merryfield et al. 2013a).

Sea ice concentrations from the assimilation system are

then relaxed toward the observations to reduce model in-

put biases (Merryfield et al. 2013a). Thickness is initialized

from a seasonally varying climatology produced from a

previous CanSIPS model version (Merryfield et al. 2013a).

Finally, the Geophysical Fluid Dynamics Laboratory

(GFDL) FLORB-01 system obtains its sea ice concentra-

tion and thickness initial conditions from the assimilation

system that ingests oceanic and atmospheric data from the

NCEP reanalysis (Msadek et al. 2014; Jia et al. 2015;

Bushuk et al. 2017). Sea ice observations are not used

in the creation of FLORB-01 sea ice initial conditions.

Msadek et al. (2014) notes that the initial conditions sup-

plied to FLORB-01 from the data assimilation system are

biased slightly low when compared to observations, which

may heavily influence FLORB-01 biases presented in a

later section.

Figure 1 presents a time series of September SIE from

1982 to 2010 from CFSR, HadISST1.1, the NASA team,

NASA bootstrap, and the NCEP operational analysis. As

seen inNotz (2014), the bootstrap and team algorithms are

similar throughout the period with the team algorithm

slightly lower than the bootstrap. In comparison, before

FIG. 1. September time series from 1982 to 2010 of initialization data sources for NMME

models. SIE units in 106 km2.
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September 1997 HadISST1.1 and CFSR are similar to the

NASA algorithms. This is due to the fact that they are

derived directly from theNASA teamalgorithm (Cavalieri

et al. 1996). After 1997, HadISST1.1 and CFSR follow the

NCEP operational analysis more closely while the NASA

algorithms fall slightly lower than NCEP. This result is

unsurprising since CFSR and HadISST1.1 switch to the

real-time NCEP operational analysis as their algorithm

source after 1997 (Grumbine 1996). These three datasets

show larger SIE values on average 0.48 millionkm2 or

about 7% greater than both of the NASA algorithms. The

underestimation of the SIE trend in HadISST1.1 has been

shown to decrease ACC scores for total SIE anomalies

(Sigmond et al. 2013). Wang et al. (2013) also document

that the change in CFSR results in a weaker SIE trend in

the CFSv2 hindcasts after 1997.

3. Results

a. SIE climatology and prediction skill

Figure 2 presents the total SIE bias among the five

different individual models and the NMME average and

significance at the 95% level is indicated by the dotted

overlay. Interestingly, the results show a striking lack

of common biases between the individual models. The

overall bias in the total SIE is smallest for CanCM4 with

an average bias of 0.08 millionkm2 over all months and

leads. More specifically, the biases run from a significant

underestimation of 1.2 millionkm2 or 7.8% less SIE in

1-month lead February prediction to an overestimation

of 0.9 millionkm2 or 6.6% more SIE in January at the

8- to 9-month leads. Biases during September are slightly

larger than other summer and fall months and are not

statistically significant until 7- and 8-month lead times.

CanCM3, with a total bias of 0.6 millionkm2, generally

underpredicts SIE for shorter leads during the winter and

overpredicts for almost all leads in the summer and early

fall and is significant over almost all months and leads. As

with CanCM4, September has the largest differences,

although biases in CanCM3 are much larger with values

over 2 millionkm2 or 35%more SIE at lead times greater

than 4months. Similar to what is shown inMerryfield et al.

(2013b), both of the Canadian models share the same

general pattern of biases, including negative biases in short

lead winter and largest positive biases in the fall. Given

that these models have the same sea ice initialization, but

differing atmospheric models (Merryfield et al. 2013b), the

similar patterns in the SIE bias imply an important role for

the initial conditions over model physics, noting that these

models also share the same ocean components, whichmay

also influence the bias patterns.

FLORB-01 consistently underpredicts SIE for all

months and leads on average by 1.1 millionkm2, which

equates to approximately 10% less SIE than the

observations, especially for forecast targets outside of

the spring (April–June). As noted in Msadek et al.

(2014), FLORB-01 initial conditions are negatively bi-

ased possibly due to imperfect model physics or un-

certainty in the satellite data. The continuation of the

negative bias in FLORB-01 into the longer lead times

also points to issues with the model physics. The largest

negative bias in any individual model stands out in

CCSM4, which significantly underpredicts the observa-

tions by values between 2.8 and 4.0 millionkm2 for

shorter leads during February through May and all

leads for forecast targets in June through October. This

underprediction equates to as much as 45% less ice than

the observed values. In contrast, CFSv2 has the largest

positive biases of up to 29% more SIE than obser-

vations. This model largely overpredicts winter and

spring SIE with values on average between 2.5 and

3.5 millionkm2 or 20% to 25% over estimations, while

showing smaller biases during the second half of the year.

Given that past studies have shown multimodel averages

improve prediction by mitigating large biases (Merryfield

et al. 2013b; Blanchard-Wrigglesworth et al. 2015), the

FIG. 2. Model bias (model minus observations) including the NMME as a function of target month vs lead time (months) for total SIE

(106 km2). Dotted overlay indicates 95% t-test significance.
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NMME average performed well with smaller biases

for most lead times and target months relative to the

individual models with an average bias of 0.07 millionkm2

or 2.8% more SIE than observed. Results from the

total SIE bias are consistent with previous studies us-

ing multimodel averages (e.g., Merryfield et al. 2013b;

Blanchard-Wrigglesworth et al. 2015).

Another skill metric, the RMSE, is shown in Fig. 3 for

the total SIE (Fig. 3a), Y2Y (Fig. 3b), detrended SIE

using linear fit (Fig. 3c), and detrended SIE using qua-

dratic fit (Fig. 3d) with significance at the 95% level in-

dicated by the dotted overlay. As stated previously, the

ability to isolate and remove the long-term trend in SIE is

not a trivial undertaking. The three detrending methods

presented here represent differing approaches for captur-

ing the interannual variability. RMSE values are generally

larger for Y2Y variability when compared to both de-

trended RMSE methods. This is possibly due to Y2Y

representing the year-to-year variability only, while the

detrendedmethods incorporate the year-to-year variability

as well as some component of the long-term trend that is

not removed (Wang et al. 2013). However, as mentioned

earlier, subtracting out a linear fit does not remove all as-

pects of the longer-term trend, which may be nonlinear.

Also, while the quadratic fit was shown previously in

Dirkson et al. (2017) and Fu�ckar et al. (2016) to provide a

FIG. 3. RMSE values for (a) total SIE, (b) Y2Y SIE, (c) linear detrended, and (d) quadratic detrended SIE as a function of target month

vs lead time (month). Dotted overlay indicates 95% t-test significance. The numeric value in the upper right of each panel represents the

average RMSE over all months and lead times.
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more accurate removal of the long-term trend, there is still

some potential for trends to influence the results if future

trends depart from the selected fit. In real-time prediction,

one does not know the influence of the trend for a given

forecast, so for real-time purposes tracking the Y2Y SIE

skill is a useful way to examine changes without an a

posteriori knowledge of the trend.

For all three metrics and the total, the error values are

greatest in the summer and fall, especially in September

(Fig. 3). This is consistent with past results indicat-

ing that individual models (CFSv2: Wang et al. 2013;

CanSIPS: Merryfield et al. 2013b; FLORB-01: Msadek

et al. 2014) have largest errors in predicting variability

for target months in late summer and fall when SIE is

at its minimum. While the overall features are similar

for RMSE, using the NMME average reduces the

RMSE for all three detrending metrics; however, it

does not show improvement over all models for the total

SIE. Also similar to all three detrending methods and

the total, FLORB-01 has the lowest error in the indi-

vidual models with CCSM4 having the largest (CanCM3

has the largest RMSE in the total and CCSM4 has the

second largest). Averaged over all months and leads,

the individual model Y2Y values range from 0.44 in

FLORB-01 to 0.48 in CCSM4. NMME Y2Y RMSE is

0.41 or around a 10% reduction. Linear detrending gives

RMSE values ranging from 0.32 in FLORB-01 to 0.35 in

both CanCM4 and CCSM4. NMME values are slightly

lower at 0.30, again around a 10% reduction. Quadratic

detrending is similar to the othermetrics in that FLORB-

01 has the lowest individual model RMSE at 0.30 and

CCSM4 has the highest value at 0.34. NMME has the

lowest RMSEof the threemethods at an average of 0.28.

The specific months and leads of improvement are de-

pendent on the model, with the NMME showing the

most improvement over FLORB-01 and CCSM4 at shorter

leads for summer targets and all leads for the fall. Fur-

ther, the NMME exhibits improvement over CanCM3

and CanCM4 for the late winter and spring at all leads

and also for most months and leads in CFSv2.

The influence of trend in prediction skill is quite evi-

dent when analyzing SIE ACC (Fig. 4). There is a stark

drop in correlation and significance when comparing the

total SIE (Fig. 4a) to the Y2Y and detrended SIEs

(Figs. 4b,c,d). Averaged over all leads and months,

FLORB-01, CFSv2, and NMME have the highest total

ACC with values averaging 0.77, 0.76, and 0.78, re-

spectively. CanCM3, CanCM4, and CCSM4 ACC are

around 30% lower with values of 0.52, 0.58, and 0.56.

Speculating as to the cause of the lower ACC scores, for

CanCM3 and CanCM4, the values may be due to issues

with the underestimation of the trends in HadISST1.1

(Merryfield et al. 2013b). Although Merryfield et al.

(2013a) also note the weak trend in CanCM3 when run

without initialization, issues in the initial conditions do not

provide the whole explanation. Since CCSM4 uses the

same initialization source as CFSv2, the lower values

may point to the model physics, rather than an initializa-

tion issue. As with the RMSE, ACC values of detrended

SIE are generally 30%–40% more skillful than the Y2Y

values, which range from 0.12 in CanCM3 to 0.27 in

FLORB-01, with NMME at 0.28. Linear detrended scores

are the highest of the three variability methods with

highest values in FLORB-01 and CFSv2 at 0.36 and lowest

ACC in CanCM4 at 0.23. As seen in all the previous

metrics, the NMME score improves over the individual

models with a value of 0.40, or approximately a 10% im-

provement over FLORB-01 and CFSv2 and a 40% im-

provement overCanCM4. The quadratic detrended values

range similarly to the linear scores, with FLORB-01 at

0.36, and a slightly lower bottom score of 0.22 in both

CanCM3 and CCSM4. As such, the NMME is slightly

lower at 0.38.While the decrease inACC values from total

SIE to interannual variability SIE is consistent with pre-

vious studies (e.g., Wang et al. 2013; Sigmond et al. 2013;

Merryfield et al. 2013b), it is clear that it is more difficult

for models to predict the variability than the total SIE

anomalies, which potentially benefit from some combina-

tion of their ability to capture the longer-term trends. For

total, Y2Y, and detrended SIEs, the NMME predictions

result in generally higher ACC compared to the individual

models. The higher ACC with the NMME is most evident

for predictions of Y2Y variability, especially for lead times

greater than ;3 months. The NMME also noticeably im-

proves upon CanCM3, CanCM4, and CCSM4 for predic-

tions of total SIE.

While the NMME generally improves the prediction

skill of total, Y2Y, and detrended SIE over any individual

model, the amplitude of the benefit will vary depending on

which skill metric is selected. The reduction in total SIE

bias is likely due to the cancellation of the large positive

and negative biases seen in the individual models. When

evaluating skill based on the ACC, there is a more sub-

stantial benefit from using the NMME over individual

models, particularly with respect to Y2Y or detrended

variability. Overall, these results support the idea that

averaging themodels in NMME results in greater skill due

to the addition of predictable signals (DelSole et al. 2014).

Finally, while not an official contribution to NMME,

statistical methods have been shown to provide skillful

predictions of SIE (Msadek et al. 2014; Blanchard-

Wrigglesworth et al. 2011, 2015). For comparison, the

same metrics are applied to a damped persistence sta-

tistical model (van denDool 2006). This model develops

coefficients using linear regression with SIE values from

the NASA team algorithm. Predictions for each month
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and lead time are created by applying the anomaly from

the linear trend of the initial month to the future pred-

icated month, scaled by the regression coefficients (van

den Dool 2006). Previous studies have shown that

damped persistence generally has lower RMSE than

dynamical model predictions in the summer months

(Blanchard-Wrigglesworth et al. 2015) and higher

detrended ACC in winter especially at longer leads

(Msadek et al. 2014). However, Sigmond et al. (2013) and

Merryfield et al. (2013b) conclude that forecast skill in

CanCM3 and CanCM4 is enhanced compared to persis-

tence. When compared to the NMME results in Figs. 3

and 4, damped persistence shows a number of inter-

esting features, some contrary to the previous findings.

RMSE scores for Y2Y (Fig. 5a) and both detrended

SIE methods (Figs. 5b,c), with values of 0.44, 0.33, and

0.31, respectively, are higher than the NMME (Fig. 3;

0.41, 0.30, and 0.28) for all leads and months. This is

contrary to the previous result of Blanchard-Wrigglesworth

et al. (2015), who found that the damped persistence

only slightly outperforms the multimodel mean for

summer initializations; however, the study uses SIPN

models from 2009 to 2014 for the multimodel mean

and state.

FIG. 4. ACC values for (a) total SIE, (b) Y2Y SIE, (c) linear detrended, and (d) quadratic detrended SIE as a function of targetmonth vs

lead time (months). Dotted overlay indicates 95% t-test significance. Numeric value on upper right of each panel represents the average

ACC over all months and lead times.
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The ACC of Y2Y (Fig. 5d) and detrended (Figs. 5e,f)

SIE show the same pattern of value decrease with lead

time when compared to the ACC as the dynamical

models (Fig. 4). The largest values between 0.4 and 0.8 at

lead 1 quickly fall to values less than 0.3 beyond lead

month 3. The higher skill values using damped persis-

tence for the longer lead winter season, as shown in

Msadek et al. (2014), are not reflected in our results,

which show that the ACC values of detrended SIE in

NMME are generally higher for all leads in the winter.

TheNMME values are also higher in themidrange leads

of 3–7 months where NMME values are positive and the

damped persistence shows near zero or slightly negative

ACC values. Over all leads and months, the damped

persistence values are approximately half the NMME

ACC averages with values of 0.17, 0.18, and 0.19 for

Y2Y, linear, and quadratic detrended scores. The results

are consistent with Sigmond et al. (2013) showing that

dynamical models and the multimodel mean are more

skillful than persistence. In fact, NMME has better skill

over not only the damped persistence model, but also

the individual models.

b. March and September SIE anomaly time series

While the previous section focuses on the SIE skill

metrics averaged over 1982–2010, here analyses exam-

ine how the predictions have evolved during that time

period. Especially given the recent acceleration in the

SIE trends (Serreze and Stroeve 2015), it is important

to question whether the models have been able to cap-

ture these changes. Because September and March are

when SIE reaches its minimum and maximum, they are

the focus of the following sections. These two months

are displayed in Fig. 6, which shows the anomaly time

series of the individual models and NMME mean with

observations (red line) overlaid for total and Y2Y SIE.

Given the results of the previous section show highest

skill for forecasts up to 5-month lead, these five lead times

are displayed leading up to the March or September

forecast target month. A single individual member (gray

lines) from a model is analogous to the observational

time series. Arctic SIE observations contain some ele-

ment of unpredictable noise plus a predictable signal

from the initial conditions and drivers such as anthro-

pogenic climate change and sea surface temperatures

(Comiso et al. 2008; Parkinson 2014). Given enough

members, the ensemble means (ranges shown by blue

shading) from each model result in noise cancellation

and therefore isolate the signal. That the observations

sometimes deviate from the spread of the ensemble

mean is expected, as the real-world SIE variability also

contains noisy fluctuations that are neither forced nor

predictable. However, within a well-calibrated model, it

is expected that the observational data should lie within

the spread of individual members. A corollary of this is

that, ideally, the variance of well-sampled observations

should match the average of the variances from each

ensemble member. If there are clear divergences from

these aspects, then providing reliable, probabilistic pre-

dictions of Arctic sea ice is a challenge that may neces-

sitate improving the model itself or applying suitable

statistical corrections.

1) MARCH SIE

For predictions of March total SIE (Fig. 6a), the obser-

vations mostly fall within the spread of the individual

members for each model and the NMME. In general, the

observations are located within the upper edge of the

spread during the early part of the record, and then during

the later period they are on the lower edge of the spread.

Because of averaging, it is not expected that the ensemble

meanwould share the same amplitude as the observations.

However, the fact that the observations lie in the upper

range (or outside) the spread of individualmembers during

the beginning of the period and at the bottom range at

the end indicates potential deficiencies in reproducing

FIG. 5. Damped persistence SIE analysis for (a) Y2Y RMSE, (b) linear detrended RMSE, (c) quadratic de-

trended RMSE, (d) Y2Y ACC, (e) linear detrended ACC, and (f) quadratic detrended ACC. Dotted overlay

indicates 95% t-test significance. The numeric value in the upper right of each panel represents the average value

over all months and lead times.

15 JANUARY 2019 HARNOS ET AL . 631

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/32/2/623/4712037/jcli-d-17-0766_1.pdf by N
O

AA C
entral Library user on 02 July 2020



observed SIE trends. Figure 7 shows the linear trend for

each lead time and observations over 1982–2010. For

March targets after lead 1, the CFSv2 ensemble mean

(blue line) and spread of individual members (gray

lines) consistently capture the observed trend especially

after lead 1. FLORB-01 also appears to reproduce the

observations with smaller errors in lead 1 relative to

CFSv2. Finally, with the exception of one or two indi-

vidual members at lead 5, the trends from CanCM3,

CanCM4, CCSM4, and the NMME are all less negative

than the observations. The smaller trends in CanCM3

and CanCM4 have been previously documented as a

consequence of the initialization source of HadISST1.1

(Merryfield et al. 2013b). Not only do these trend

values indicate a slower decline in SIE, they are

around a quarter to half as steep as the observations.

The ensemble mean from CCSM4 even has a slight

positive trend at lead 1. To examine how the spread, or

variance, of the individual members varies by lead time,

Fig. 8 compares the standard deviation of the individual

members for each model and the NMME mean as a bar

graph to the observations (straight dashed line). Overall,

each system is relatively similar, but slightly underdisper-

sive to the observed total March SIE value.

For March Y2Y SIE, the observed trends lie consis-

tently within the individual member spread (Fig. 6b).

However, in contrast to the March total SIE, the vari-

ance (Fig. 8) of the individual members is almost

double the observed variance across the models and

the NMME at all lead times. While it is possible that

the observational dataset itself has too little variance

due to measurement or algorithm errors, it also in-

dicates that the models are overdispersive for March

Y2Y forecasts, most likely resulting in underconfident

probabilistic forecasts. Thus, properly calibrating

the forecast probabilities is an important avenue for

future work.

2) SEPTEMBER SIE

Predictions for September total SIE anomalies

(Fig. 6c) show that, across all models, there are periods

of time when the observations clearly lie outside of the

spread of the model predictions. This is particularly true

in 1996 and in the years following the large sea ice melt

in 2007, when the NMME and models underestimated

the degree of sea ice loss. With decreased sea ice

thickness, longer melt seasons, and warmer winters

(Serreze and Stroeve 2015) contributing to a steeper

trend in the later record, it is possible the under-

estimated trend in the NMME is increasingly a function

of poor initial conditions (e.g., lack of sea ice thickness

information playing a larger role). Similar to March

total SIE anomalies (Fig. 6a), the observations start near

the upper edge of the ensemble spread during the early

part of the record, and then reside near the lower edge

of the spread near the end of the period. Again this

FIG. 6. Time series of SIE observation anomalies (red line) with the range of ensemble mean anomalies (1- to 5-month lead time; blue

shading) and individual ensemble member anomalies (gray lines) for each individual model and the NMME mean: (a) total March SIE,

(b) Y2Y March SIE, (c) total September SIE, and (d) Y2Y September SIE. Units for SIE are 106 km2.
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indicates that the individual models and NMME mean

are not capturing the magnitude of the SIE decrease in

the most recent years. As for March, FLORB-01 and

CFSv2 are closest to the observed September trend.

Also, CanCM3, CanCM4, CCSM4, and NMME indi-

vidual members and ensemble mean have trends of

roughly half of the observed values.

Contrary to March, the variance of individual models

and the NMME ensemble for total September SIE

(Fig. 8) is generally half the observed variance at all lead

times. This is in part due to the inability of the models to

capture the observed trends. While for March Y2Y SIE,

the models show an overdispersion, for total September

SIE the models suggest underdispersion. As a result of

the underdispersion and errors in CFSv2, Collow et al.

(2015) reran CFSv2 based on a modified version of the

model that assimilates sea ice data from PIOMAS, which

includes detailed information on sea ice thickness and a

more realistic marine stratus cloud scheme. While the

1982–2010 CFSv2 reforecasts were not regenerated and

are not shown here, their modified CFSv2 has produced

significant improvement for real-time September SIE

predictions indicating the importance of including sea

ice thickness into model initializations.

Finally, for Y2Y September SIE (Fig. 6d), the obser-

vations largely lie within the spread of the individ-

ual model member forecasts including the more

extremeY2Y years (e.g., 1996, 2007). Similar to theY2Y

March values, the observations generally follow the

center of the spread, with the ensemble mean follow-

ing the same pattern as the observations. Clearly, the

two largest Y2Y changes in 1996 and 2007 were not

captured by the ensemble mean in every model, but

they largely lie within the manifold of individual en-

semble members, indicating that they were partially a

consequence of natural internal variability. The models

mostly capture the observed Y2Y variance (Fig. 8), with

CanCM3 and FLORB-01 more significantly departing

from the observations.

c. Changes in forecast skill

The final analysis seeks to examine the temporal

changes in the forecast skill over the hindcast period.

The time series in Fig. 9 show sliding 10-yr windows of

the ACC and RMSE skill metrics for the months of

September and March and for both total or Y2Y SIE.

For example, the label 1995 indicates the range from

1986 to 1995. Each line represents a different forecast

lead time, with darker blue lines indicating shorter leads

and lighter yellows indicating the longer leads. The t-test

significance at the 95% level is represented as filled

circles within the significant windows. In the left column of

Fig. 9, ACC values for March (both total and Y2Y) show

considerable variability in correlations over time,with little

dependence on lead times. Significance is foundwhen total

ACC values are larger than around 0.5 for lead 1, 4, and 7

before 2005 and most leads after 2006. Likewise, March

Y2YACC is significant at lead 7 before 2000 and lead 4 in

2002 and 2003. In contrast, September ACC demonstrates

some dependence on forecast lead time, with relatively

constant, high, and significant ACC through lead 4. While

ACC are lower, generally not significant, and more vari-

able at longer lead times. When comparing ACC averages

for 1983–2002, 1993–2012, and 2003–12 in the FLORB-01

predecessor, Msadek et al. (2014) found a decrease in

September anomaly correlation for linearly detrended SIE

after 2002. They attributed this skill degradation to de-

creasing ice thickness, which is less predictable (Holland

et al. 2011). Within the sliding windows, a similar decrease

is not found in September Y2Y correlation with the

FIG. 7. Trend vs lead time from the time series in Fig. 6. The ensemble mean is shown in blue with the individual ensemble members in

gray. The red horizontal line is the observed trend. Units for SIE trend are 106 km2.
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NMME, but instead notice a significant increase in total

RMSE over the most recent decade.

For March, there is little to no lead-time dependence

in RMSE (Fig. 9, right column) with values between

0.2 and 0.5 for all windows and leads. Significance is only

seen for the first three leads before 2000 and after 2006

for Y2Y RMSE. This is likely due to smaller trends and

Y2Y variability during the month when SIE is maxi-

mized. RMSE values for September, in contrast to

March, are more dependent lead time, with smaller

errors for shorter forecast leads. There are also changes

in the RMSE values across the period of record with sig-

nificance throughout most of the timespan. The RMSE

for total September SIE are relatively low and constant

between 0.4 and 0.6 during most of the record early pe-

riod. Starting in the 2007 window, there is an increase to

over 0.6 with longer leads near 0.8 until the end of the

data record. In contrast, the Y2Y errors decrease toward

the end of the record. Because Y2Y changes are mostly

independent of longer-term trends, this suggests that er-

rors in the prediction of total SIE are increasing over

time due to the NMME not adequately capturing the

trend in recent years. However, this conclusion is made

with a relatively short data record. It is also interesting

to note that the total September RMSE is occasionally

larger than the Y2Y RMSE. This is also corroborated

by the results of Fig. 6, which clearly demonstrate the

deviation of the observations from the predictions for

September in the later portion of the time period.Overall,

the implication is the trend contributes to these errors in

NMME, especially given the significant acceleration in

SIE loss documented in several past studies (Stroeve et al.

2012; Comiso et al. 2008).

4. Summary

This study is the first to make use of a currently op-

erational multimodel forecasting system, the NMME, to

FIG. 8. Standard deviation of individual ensemblemembers averaged for each lead time for

each of the models (colors). The black dashed line is the observational value. Units for SIE

standard deviation are 106 km2.
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assess the skill of seasonal SIE. To our knowledge, this

study also uniquely documents, using a long reforecast

record (1982–2010) how the prediction skill has changed

over time, finding that September total SIE errors have

increased in the latter part of the record. Results in-

dicate that, as a real-time system, complemented by long

reforecasts, the NMME would be able to improve upon

the overall skill of individual model systems. It also would

be equipped to flag recent changes in skill, which is in-

strumental given the rapidly changing conditions in the

Arctic and heightens the odds that past skillmay not be an

indicator of the future.

A major advantage of the NMME system is that the

multimodel average provides more skillful predictions

over any individual model (e.g., Merryfield et al. 2013b;

Blanchard-Wrigglesworth et al. 2015). The NMME aver-

age demonstrates lower bias for predictions of total SIE,

reduced RMSE for both Y2Y and detrended variability,

and increased correlations of Y2Y SIE variability. In fact,

NMME gives around a 10% reduction in RMSE for all

the metrics examined. Given these improvements, fu-

ture work should focus on isolating the common sources

of skill, which may be determined by their ability to

initialize sea ice and oceanic conditions and also capture

atmosphere–ocean sea ice coupling over preceding sea-

sons (e.g., Ding et al. 2017; Blanchard-Wrigglesworth

et al. 2011; Sigmond et al. 2013). While detrended (both

linear and quadratic) SIE is used in most studies to

quantify interannual variability (e.g., Msadek et al. 2014;

Wang et al. 2013; Merryfield et al. 2013b; Sigmond et al.

2013; Dirkson et al. 2017), the accelerating trend in SIE

makes it difficult to separate interannual variability from

longer-term, fitted trends (Serreze and Stroeve 2015).

Although Y2Y SIE is slightly less skillful than detrended

SIE, this measure isolates real-time interannual vari-

ability independent of an a posteriori fitted linear trend.

Initialization has been shown to heavily influence pre-

diction skill in individualmodels (Blanchard-Wrigglesworth

et al. 2015; Msadek et al. 2014). Each model contributing

to the NMME has a different approach to creating the

initial sea ice conditions. While this study did not rerun

any hindcast simulations with improved initializations,

findings presented here corroborate past studies that

have shown that forecast biases may relate to the initial

conditions (Msadek et al. 2014). However, biases due

to imperfect model physics cannot be ignored especially

FIG. 9. Time series of (left) ACC and (right) RMSE for NMME ensemble mean at each lead time out to 9 months

(line colors). Dots indicate 95% statistically significant values.
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since biases remain for most of the models long after ini-

tialization. Here, results show CanCM3 and CM4 have

similar biases across target month and lead times. The fact

that these models have differing atmospheric physics but

use the same initialization points to the influence of sea ice

initialization in contributing tomodel bias, with a note that

the ocean model physics may influence as well. Msadek

et al. (2014) also shows the importance of initialization

when FLORB-01 is compared to a lower-resolution ocean

model. SIE still has similar skill despite the different

models. This suggests that the quality of operational sea ice

observations and assimilation systems needs to be im-

proved in order to increase SIE skill. Chevallier et al.

(2017) also note that biases within reanalyses have an

impact on the forecast simulations. One way to improve

initializationmay be to focus on inputs of sea ice thickness.

Day et al. (2014) outline the influence of sea ice thickness

and determine that accurate sea ice thickness initializa-

tion impacts forecasts up to 8-month lead. Blanchard-

Wrigglesworth et al. (2011) andChevallier and Salas-Mélia
(2012) show that, due to persistence in sea ice thickness,

the summer sea ice minimum may have predictability at

lead times of 6 months or longer. This improvement in

prediction is also documented in Collow et al. (2015)

and Dirkson et al. (2017) when initializing CFSv2 and

CanCM3with PIOMAS sea ice thickness resulted in

significant improvement in predictions.

September anomaly time series show that models tend

to overestimate SIE during the latter part of the 1982–2010

hindcasts, especially after the 2007 September sea ice min-

imum (L’Heureux et al. 2008). Blanchard-Wrigglesworth

et al. (2015) point out that more recent summer sea ice

extent may be less predictable in the more recent period

possibly due to reduced sea ice thickness (Holland et al.

2011). Also, the switch in initial condition sources from

the NASA team algorithm to the NCEP operational anal-

ysis in 1997 may have influenced the biases seen in the

recent periods, as noted in the CFSv2 (Wang et al. 2013).

The struggle of the models to predict the following year

SIE change, along with the increasingly larger errors for

September SIE predictions in recent decades, suggests

that prediction of the trend remains a fundamental

challenge for most coupled modeling systems. How-

ever, the short reforecast record after the 2007 decrease

in skill should be noted when extrapolating a con-

tinued trend. Skill degradation in models over the

recent decades is a cause for concern and should be

monitored in real-time forecast runs and extensions of

the hindcast.

While this study gives an overview of NMME sea ice for

the entire Arctic domain, future work could focus on eval-

uating the skill of regional sea ice extent and concentration.

Already, using SIPN models, Blanchard-Wrigglesworth

et al. (2017) note that forecast uncertainty is highest along

the Arctic coastlines. Goessling et al. (2016) also suggest

focusing on the predictability of the sea ice edge, but their

results show that the ice edge is less predictable than SIE,

especially in September. Finally, Bushuk et al. (2017) and

Sigmond et al. (2016) show that skillful regional pre-

diction of SIE is highly sensitive to specific regions, but

generally exceeds the skill of a persistence forecast.
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